Импульсный металлоискатель на ардуино. Один из простых металлоискателей с дискриминатором «Megatron. Проблемой такого дисплея является ненадежный контакт ЖК-панели с печатной платой посредством соединителя ZEBRA, который устраняется, например, припаивание

Информация предоставлена исключительно в образовательных целях.
Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.

Плату Arduino можно использовать в импульсном металлодетекторе (Pulse Induction Metal Detector (PI) ) и как генератор импульсов, так и для обработки и отображения результатов.

Подробнее о принципах работы аналогового импульсного металлодетектора можно прочитать .

Мой импульсный металлодетектор на Arduino - проект FoxyPI

версия 1 (FoxyPI v1) (устаревшая )
Что нового: первая версия.
GNU General Public License v3.0, доступен на Github в репозитарии https://github.com/Dreamy16101976/foxyPIv1 .

Видео испытаний прототипа:
https://youtu.be/VWCA6jYK5tY

версия 2 (FoxyPI v2) (устаревшая )

Что нового:

  • добавлено усреднение анализируемой длительности импульса катушки по алгоритму "скользящего среднего" (moving average , MA );
  • добавлена возможность настройки длительности импульсов, интервалов между ними, времени задержки и ширины окна скользящего среднего с помощью меню, а также сохранение настроек в EEPROM ;
  • добавлено изменение тональности сигнала при изменении длительности импульса катушки;
  • добавлен динамический режим работы металлодетектора;
  • модифицирован драйвер MOSFET ;
  • объединены переключатели "+5 В" и "+12 В", а освободившийся переключтель использован для управления подсветкой LCD -экрана;
  • добавлены светодиоды для индикации уровня сигнала.

Лицензия исходного кода скетча: проприетарная .


Hex
-файл
прошивки FoxyPI (версия 2.11) для - .
Как прошить hex -файл в плату Arduino , я описал .

Полевые испытания и поиск (26.03.2016) - https://youtu.be/Xk4X6O1646M
Испытания прототипа (4.01.2016) - https://youtu.be/ikJbqUCbyvw

Схема металлодетектора (версия 2 ) :

версия 3 (FoxyPI v3)

Что нового:

  • для определения уровня сигнала используется не компаратор, как в предыдущей версии, а АЦП Arduino ;
  • два режима поиска - динамический и статический (переключение между режимами по долгому нажатию на кнопку);
  • для повышения стабильности используется интегрирование сигнала;
  • выполняется эмуляция интегратора и фильтра высоких частот;
  • изменены пункты меню;
  • удержание кнопки при включении вызывает вход в меню настроек;
  • нажатие кнопки запускает/останавливает балансировку;
  • используются два уровня аудио- и визуальной индикации вместо четырех.

Дискриминация мишеней в этой версии отсутствует .

Схема металлодетектора (версия 3 ) :

  • исключаются элементы, связанные с использованием компаратора - R5 , R6 ;
  • для повышения коэффициента усиления ОУ изменен номинал резистора R3 на 320 кОм (составлен из двух резисторов номиналами 220 кОм и 100 кОм);
  • изменена схема питания микроконтроллера.

В схеме металлодетектора две изолированные друг от друга "земли" - аналоговая (значок заземления) и цифровая (значок корпуса).

Лицензия исходного кода скетча : проприетарная .


Hex
-файл
прошивки FoxyPI -

Elf -файл прошивки FoxyPI (версия 3.3 от 16.04.2019, первая доступная прошивка версии 3.3) для -

Как прошить hex -файл в плату Arduino , я описал .


Видео "воздушных" испытаний в динамическом режиме (7.04.2019, версия 3.2) - https://youtu.be/HzIiA9ws0Ak
Видео "воздушных" и "подземных" испытаний в динамическом режиме (11.04.2019, версия 3.3) - https://youtu.be/GwRvhjCmOE4
Видео "воздушных" испытаний в статическом режиме (13.04.2019, версия 3.3) - https://youtu.be/1ulevNWBZ9A

Внешний вид электронного блока:


вид сверху :
1 - LCD -экран
2 - светодиод
3 - пьезодинамик
4 - кнопка управления
5 - выключатель подсветки LCD-экрана
6 - выключатель питания
7 - светодиоды индикации уровня сигнала

Металлодетектор транспортируется разобранным на три части - блоки электроники и питания с ручкой, штанга, катушка с проводом:

Внешний вид собранного металлодетектора:

Эксплуатация металлодетектора

Включение и запуск металлодетектора

При включении питания металлодетектора (выключателя 6) сначала запускается отсчет:


Для перехода между пунктами меню требуется короткое нажатие кнопки (4) (при этом загорается зеленый светодиод), а для выбора пункта меню - длинное нажатие кнопки (4) (при этом загорается красный светодиод):

Для перехода между значениями параметра для выбранного пункта меню требуется короткое нажатие кнопки (4) (при этом загорается зеленый светодиод), а для выбора значения параметра - длинное нажатие кнопки (4) (при этом загорается красный светодиод):

Для выхода из меню следует выбрать пункт "EXIT ":

После завершения отсчета на дисплее (1) отображается сообщение с обозначением устройства и номером версии программного обеспечения ("FoxyPI v3.x"), логотипом, а из пьезодинамика (3) звучит звуковой сигнал с изменяющейся тональностью, соответствующий различным уровням сигнала и сопровождающийся миганием светодиодов:

Обнаружение мишеней с помощью металлодетектора

Затем, если не выбран вход в меню, отображаются текущие настройки прибора:

L - длительность импульса (мкс, us )
R - частота следования импульсов (имп./с, pps )
I - коэффициент интегратора
F - коэффициент фильтра
S - звук (вкл/выкл, ON /OFF )

Затем выполняется балансировка (zeroing ) в статическом режиме:

Металлодетектор работает в двух режимах:

  • статический режим (static/non-motion mode ) (по умолчанию) - учитывается уровень сигнала, не требует постоянного перемещения катушки (может использоваться как для уточнения расположения мишени (pinpointing ), так и как основной режим поиска);
  • динамический режим (dynamic/motion mode ) - учитывается динамика изменения сигнала, в процессе поиска катушку необходимо перемещать над поверхностью грунта

При балансировке желательно перемещать катушку (аналогично действиям при поиске - это особенно важно при балансировке в динамическом режиме). Необходимо выполнять автобалансировку над чистым участком грунта (не над мишенью), не содержащем минералы. О мешающем влиянии грунта на импульсный металлодетектор Вы можете прочитать .

Важно стараться перемещать (sweep ) катушку параллельно поверхности земли, иначе из-за влияния магнитного поля Земли на катушке будет наводиться некоторое напряжение (EFE - earth field effect ), которое может вызвать появление ложных сигналов: даже просто при перемещении катушки над землей:

При неправильном перемещении поисковой катушки изменяется магнитный поток $\Phi$ через нее:

Это объясняется тем, что магнитный поток определяется выражением:
$\Phi = {B \, S \, sin \, \alpha}$, где $B$ - индукция магнитного поля Земли, $S$ - площадь сечения катушки, $\alpha$ - угол между плоскостью катушки и направлением силовых линий магнитного поля Земли.
На приведенном рисунке в первом положении катушки магнитный поток равен нулю, а при перемещении приобретает ненулевое значение. Из-за изменения магнитного потока через катушку в ней согласно закону электромагнитной индукции наводится ЭДС, которая искажает принимаемый сигнал.

Неаккуратное перемещение катушки увеличивает уровень сигнала на 4000...5000, а энергичное перемещение катушки из горизонтального положения в вертикальное - на 15000...20000.

В процессе автобалансировки устанавливается оптимальная начальная задержка и длительность анализируемого сигнала, а также оценивается динамика сигнала (в динамическом режиме) или уровень сигнала (в статическом режиме), при этом обновление "нулевого" уровня сопровождается коротким звуковым сигналом. При прекращении обновления балансировку можно остановить нажатием кнопки (4). Также балансировку можно запустить/остановить и в процессе работы нажатием кнопки (4). После окончания автобалансировки подается короткий звуковой сигнал и отображается "нулевое" значение (максимальное, в условных единицах).

После этого запускается основной цикл работы металлодетектора, при этом на экране отображается текущий режим (MODE ) работы детектора, ZERO - значение "нулевого" уровня, заданное при балансировке (для статического режима типичные значения 120 000 - 125 000 , при изменении длительности импульса от 150 до 250 мкс меняется незначительно), и RX - начальная и конечная точки (диапазон) анализируемого сигнала (типичные значения - 16...43, , при изменении длительности импульса от 150 до 250 мкс меняются незначительно) для длительности импульса 150 мкс) (переключение между режимами выполняется долгим нажатием кнопки (4)):

Признаки неисправностей (нулевой уровень / диапазон)

  • обрыв в катушке - 12250 / 3...4 или 23000 / 2...4
  • неиндуктивная катушка (замена резистором 10 Ом) - 23000 / 0...2 или 1...3

Пример разброса начальных "нулевых" уровней:

111289 111701 111762 111819 112029
111907 112067 111871 111827 111625

При обнаружении металлического объекта-"мишени" звучит звуковой сигнал изменяющейся тональности и загорается зеленый светодиод (2), а также зеленый либо красный светодиоды (7). Характер аудиовизуальной индикации меняется в соответствии с динамикой (в динамическом режиме) или уровнем (в статическом режиме) регистрируемого RX -импульса:

Светодиоды Статический режим Динамический режим
нет мишени нет мишени
слабый уровень сигнала уровень сигнала уменьшается
средний уровень сигнала уровень сигнала увеличивается
сильный уровень сигнала -

Сильные помехи на работу металлодетектора оказывают работающие вблизи электронные устройства:

помехи от LCD -телевизора (ощущаются на расстоянии до метра):

помехи от КЛЛ (ощущаются вблизи лампы):

помехи от магнитного поля включенного в сеть трансформатора проявляются в виде трели - очень частых срабатываний:

При эксплуатации прибор должен находиться на удалении от работающих телевизоров, компьютеров, силовых трансформаторов, КЛЛ!

Настройка металлодетектора

Если при включении удерживать нажатой кнопку (4) до начала отсчета, то затем происходит вход в меню, позволяющее изменить настройки металлодетектора.

Структура меню (выделены значения настроек по умолчанию):

  • PULSE LEN - длина импульса (100/150 /200/250 us)
  • PULSE FREQ - частота следования импульсов (10/20/30/40/50/60/70/80 /90/100 pps)
  • INTEGRATOR K - коэффициент интегратора (5/10 /20/30/40/50)
  • FILTER K - коэффициент фильтра (10/20/30/40/50/60/70/80 /90/100/110/120/130/140/150/160/170/180 /190/200)
  • SOUND - звук (ON /OFF)
  • EXIT - выход из меню

При коротком нажатии на кнопку (4) происходит переход к следующему пункту меню, а при долгом - переход к значениям выбранной настройки.
Короткое нажатие при этом вызовет переход к следующему возможному значению, а долгое - сохранение текущего значения и переход на верхний уровень меню (к списку настроек).

После выбора EXIT происходит выход из меню и сохранение настроек в EEPROM .

Тестирование металлодетектора

Для тестирования металлодетектора при сборке можно загрузить в Arduino тестовую прошивку (для версии 3):

Hex -файл тестовой прошивки FoxyPI -

Elf -файл тестовой прошивки FoxyPI (версия 3.T от 24.04.2019) для -

В тестовом режиме металлодетектор после включения генерирует в поисковой катушке импульс тока длительностью 150 мкс, а затем регистрирует и отображает на экране принятый сигнал. При нажатии кнопки генерируется новый импульс и т.д.

Примеры сигналов:
1 - без мишени, 2 - с мишенью:

Испытания металлодетектора

Испытания металлодетектора я провожу на расчищенной земляной площадке:

Мишени

Для испытаний используются различные мишени:


1 - алюминиевая пластина из "винчестера" (жесткого диска) (толщина 1,3 мм, внешний диаметр 3,75 дюйма, диаметр отверсия 1 дюйм)
2 - российская монета достоинством 5 рублей из меди, плакированной мельхиором (диаметр 25 мм, масса 6,45 грамма)
3 - золотое колечко

Дальности обнаружения мишеней "в воздухе":

Любопытно, что при наложении друг на друга двух пластин (мишеней 1) дальность обнаружения снижается !

При снижении напряжения батареи дальность обнаружения заметно снижается:
В зарубежных металлодетекторах в качестве тестовой мишени часто используется монета Великобритании 10 пенсов - 10p диаметром 24,5 мм, которая ранее (до января 2012 года) изготавливалась из медно-никелевого сплава (медь 75 %, никель 25 %):
Аналог такой монеты - монета США 25 центов - 25 US cent (U.S. quarter ) диаметром 24,26 мм толщиной 1,75 мм массой 5,67 грамма:
Заявленная глубина обнаружения таких монет для различных металлодетекторов (max. depth for a US quarter ):
Altai Treasure Seeker 2 hobby metal detector - 15 см;
Prestige Metal Detector - 16 см;
Supereye S3000 Metal Detector - 18 см;
EE Treasure Hunter - 20 см.

Дальности обнаружения массивных мишеней в статическом режиме:

Изделия из порошкового железа и многие ферритовые детали (1) металлодетектор не обнаруживает, но некоторые изделия из феррита (2) детектируются внутри катушки на расстоянии нескольких см от обмотки:

При быстром перемещении ферритового магнита внутри катушки возникают ложные срабатывания:

Результат первого поиска в саду с FoxyPI v3.3 (21.04.2019):

Результат второго поиска в саду с FoxyPI v3.3 (27.04.2019):

А вот еще находки, но уже после электролитической очистки (о ней ниже):

Про некоторые интересные находки можно прочитать .

Очистка находок от ржавчины

Найденные находки часто покрыты слоем ржавчины (оксида железа Fe 2 O 3).
Для очистки находок от ржавчины можно использовать несколько методов:

химический метод - использование химиката, преобразующего ржавчину в легкоудаляемое (рыхлое) состояние:

  • щавелевая кислота;
  • ортофосфорная кислота.

электролитический метод - наиболее эффективен, применяется для удаления грязи и продуктов коррозии, в том числе и в археологии:

возможны два режима очистки - анодная (очищаемый предмет является анодом, очистка производится пузырьками кислорода) и катодная (очищаемый предмет - катод, а очищающий эффект дают пузырьки водорода, которых выделяется в два раза больше, чем кислорода при анодном процессе - подобный процесс используется для получения водорода)

Ниже я опишу применяемый мной катодный способ очистки.

пластиковая или стеклянная (не подверженная коррозии) емкость наполняется:
2 % (по другим сведениями, 5 - 10 %) водным раствором щелочи - едкого натра NaOH ;
водным раствором кальцинированной соды Na 2 CO 3 (1 столовая ложка на три литра воды, но я использую более насыщенный раствор):

Один электрод (анод) - пластинка из стали, в том числе нержавеющей, листового железа, алюминия или латуни, иногда применяются и угольные электроды. Я использую нержавеющую сталь:

Примечание.
Анод из нержавеющей стали выделяет токсичные вещества, латунь способствует выделению меди на катоде, а алюминиевый анод быстро изнашивается.

Анод и катод опускаются в раствор, к аноду подключается "+" источника питания, а к очищаемой детали подключается "-" (я обматываю очищаемый предмет медной проволокой). Начинается процесс электролиза воды, сопровождаемый выделением пузырьков газа и образованием хлопьев ржавчины (на катоде - очищаемом предмете - выделяются пузырьки водорода, разрушающие ржавчину: 4H 2 0 + 4e - = 4OH +2H 2).

Также существует альтернативное описание реакции при катодной очистке:
4H + + 4e - = 2H 2 (но в этом случае требуется кислотная среда для образования достаточного количества ионов водорода).

В ходе процесса ржавчина начинает собираться возле анода:

В конце процесса вся емкость заполнена частицами ржавчины:

Ржавчина в процессе электролиза покрывает анод:

Лакмусовая бумажка, погруженная в раствор, показывает реакцию на щелочную среду:

После окончания процесса очистки очищаемая деталь оказывается покрыта рыхлым слоем загрязнения, который удаляется металлической щеткой:

После электролитической очистки находка выглядит так:

Осциллограммы

Используя лабораторный стенд, как цифровой осциллограф, я снял ряд осциллограмм:

лабораторный стенд -

напряжение на поисковой катушке -

Устройство металлодетектора

Конструктивное исполнение

Штанга

Для штанги металлодетектора я использовал ПВХ-трубу диаметром 25 мм с толщиной стенок 1,6 мм (PN16 ):

Рукоятка

Рукоятка металлодетектора крепится к трубе, на которой закреплены электронный блок и блок питания, с помощью компрессионного фитинга:

Электронный блок

В качестве корпуса электронного блока металлодетектора я использовал распределительную коробку Tyco со степенью защиты IP55 (от воды и пыли) из ПВХ c десятью вводами диаметром 30 мм.

Вид внутри электронного блока:


На ПВХ-трубе электронный блок закрепляется посредством U -образных держателей, которые фиксируются нейлоновыми стяжками:

Блок питания

Для размещения элементов питания я использую распределительную коробку. На ПВХ-трубе блок питания закрепляется посредством U -образных держателей, которые фиксируются нейлоновыми стяжками.

Электроника

Микроконтроллер
Я использую плату Arduino Nano 3.0.

3-й версии основана на 8-битном AVR микроконтроллере ATmega328P (32 кБайт Flash , 2 кБайт SRAM , 1 кБайт EEPROM , 3 таймера) (2-й версии - на ATmega168 ), причем буква "P " обозначает "picoPower ".

контакты Arduino :

вывод Arduino назначение
D08 выход сигнала генератора импульсов в катушке
D13 выход для подключения светодиода
D11 выход для подключения пьезодинамика
A00 вход АЦП - для ограниченного и усиленного сигнала с поисковой катушки
A01 выход для подключения зеленого светодиода
A02 выход для подключения красного светодиода
D02 вход подключения кнопки
REF вход опорного напряжения для АЦП

ресурсы Arduino :

Для сопряжения с USB -портом в моей плате Arduino используется микросхема преобразователя CH340G .

Источники питания

Питание микроконтроллера

Для питания Arduino я использую два соединенных последовательно литий-ионных аккумулятора UltraFire ZX 18650 емкостью 4200 мА·ч каждый:

Напряжение холостого хода такого полностью заряженного аккумулятора составляет 4,21 В, а на нагрузке 10 Ом через 1 минуту работы - 3,61 В.

Номинальное напряжение такой батареи составляет 7,4 В.

Напряжение батареи 7,4 В преобразуется в напряжение 5 В для питания платы Arduino с помощью интегрального стабилизатора 78L05 (на схеме обозначен VR1 ):

Питание силовой части

Я использую в качестве источника питания силовой части 10 щелочных батарей размера AA (LR6 ).

Я оценил некоторые из использованных мной батарей:

Тип батареи Напряжение х.х., В Напряжение
под нагрузкой
(через 1 минуту работы), В
Camelion Plus Alkaline 1
... ... (10 Ом)

... ... (10 Ом)
Duracell Duralock (Alkaline) 2
1,54 1,47 (10 Ом)
Ермак (алкалиновые)
1,62 1,43 (10 Ом)
Energizer Max (Alkaline) 3
1,62 1,51 (10 Ом)
Energy (алкалиновые)
1,62 1,48 (10 Ом)

1 - номинальная емкость составляет 2700 мА·ч (при непрерывном разряде до 0,8 В током 25 мА)
2 - технология позволяет сохранять заряд при хранении до 10 лет,
на батарейках при этом на полоске нанесена надпись "":

1 - батарейки Duracell , произведенные с использованием технологии
2 - обычные батарейки Duracell
3 - по данным производителя:
номинальное внутреннее сопротивление (Nominal IR ) - 150...300 мОм;
диаграмма зависимости емкости от тока разряда:

Для размещения батарей размера AA я использую батарейный отсек на 10 элементов:

Номинальное напряжение такой батареи составляет 15 В.

Катушка L2 предназначена для снижения помех, вызванных импульсами тока поисковой катушки. Диод VD3 шунтирует батарею питания для отрицательных выбросов напряжения, возникающих на индуктивности поисковой катушки, и защищает от неправильной полярности батареи питания. Конденсатор C1 большой емкости является накопителем энергии - играет важную роль при генерации импульсов тока в катушке.

Для подключения источников питания используется четырехконтактный разъем на боковой стороне корпуса электронного блока:

1 - "+" батареи 15 В
2 - "-" батареи 15 В
3 - "-" батареи 7,4 В
4 - "+" батареи 7,4 В

Катушка

Параметры катушки

Поисковая катушка со средним диаметром $D$ = 25 см (средний радиус $R$ = 12,5 см) и радиусом сечения катушки $a$ = 0,29 см содержит $w$ = 27 витков эмалированного медного (удельное сопротивление $\rho$ = 0,0175 Ом·мм 2 /м) провода диаметром $d$ = 0,7 мм (радиус провода $r$ = 0,35 мм,площадь сечения провода $S$ = 0,385 мм 2):

Предполагаемое сопротивление катушки $R = {\rho {{\pi D w} \over {S}}}$ = 0,964 Ом, а измеренное составило $R$ = 1,3 Ом:

Для вычисления индуктивности такой катушки существует несколько формул.

приближенная формула :

$L = {{w^2}{{\mu}_0}R[{ln({{8R} \over a})}-2]}$ ,

где $a$ - радиус сечения катушки.

Эта формула приведена в книге [F. W. Grover, Inductance Calculations: Working Formulas and Tables, New York: Dover, 1946 ].

Для моей катушки:
$L$ = 440 мкГн .

более точная формула :

$L = {{{\mu}_0} \over {4 \pi}} {w^2} D \Phi $, где $\Phi$ - вспомогательный коэффициент:
$\Phi = {2 \pi [{(1 + {{{\gamma}^2} \over 2})} {ln ({4 \over \gamma})} - 1,75 + {{{\gamma} ^2} \over 6} ] } $, где $\gamma = {a \over D}$, $a$ - радиус сечения катушки

Эта формула используется в плагине multiloop для программы Coil32 (http://coil32.net/multi-winding-round-loop.html) для расчета индуктивности многовитковой круглой катушки с круговым сечением (англ. multi-winding round loop with round cross-section ).

Для моей катушки:
$\gamma$ = 0,0116;
$\Phi$ = 25,7;
$L$ = 468 мкГн .

интегральная формула :

$L = {{\mu}_0} {w^2} {\pi} R {{\int_0^{1-{a \over R}}} B_{rel}({\rho}) {\rho} \, {d{\rho}} } $,

где $B_{rel}({\rho}) = { {1 \over \pi} {\int_0^{\pi}} {{1 - {{\rho} cos {\phi} }} \over {{(1+{{\rho}^2}-2{\rho}cos{\phi})}^{3 \over 2}}} \, d{\phi} }$ - относительная магнитная индукция в плоскости катушки на расстоянии ${\rho} \over R$ по сравнению с индукцией в центре катушки, $a$ - радиус сечения катушки

Магнитное поле катушки

При протекании по такой катушке тока $I$ в точке на оси катушки, находящейся на расстоянии $z$ от плоскости катушки, создается магнитное поле, напряженность которого определяется известным выражением:

$H = {w {I \over 2} {{R^2} \over {{(R^2 + z^2)}^{3 \over 2}}}}$

Если принять внутреннее сопротивление одной батарейки как 0,3 Ом, ЭДС - 1,45 В, то для десяти батареек общая ЭДС $E$ составит 14,5 В, а общее сопротивление $R$ цепи с учетом сопротивления поисковой катушки 1 Ом составит 4 Ом. Принимая индуктивность катушки, равной 450 мкГн, получаем, что за длительность $T$ импульса, равную 150 мкс, ток в катушке достигнет значения ${E \over R} (1 - e^{-{T R}\over L}) = 2,7 А$.

Конструкция катушки

Для защиты катушки можно использовать гофрированный шланг для электропроводки (обычно серого цвета) который разрезается вдоль:

В него вставляется катушка, а затем он скрепляется изоляционной лентой. Катушка закрепляется в монтажной коробке с помощью термоклея и нейлоновых стяжек.
Катушка закрепляется на штанге с помощью компрессионного фитинга, резьбовая часть которого вкручена в полипропиленовую трубку диаметром 26 мм, закрепленную на крышке монтажной коробки с помощью нейлоновой стяжки и термоклея:

Для подключения катушки используется двухконтактный разъем на боковой стороне корпуса:

Генератор
Для выдачи импульсов я использую цифровой вывод D08 , установив его как "выход" (цифровой вывод D08 соответствует выводу PB0 микроконтроллера ATmega ) .
Для ускорения я использую не команду digitalWrite , а прямую запись в порт, что быстрее примерно в 10 раз !

Соответствие цифровых выводов Arduino и выводов портов ATmega

цифровой вывод Arduino вывод порта ATmega
D00 PD0
D01 PD1
D02 PD2
D03 PD3
D04 PD4
D05 PD5
D06 PD6
D07 PD7
D08 PB0
D09 PB1
D10 PB2
D11 PB3
D12 PB4
D13 PB5

Временные параметры генератора задаются через меню настроек при включении прибора.

Силовая часть

Так как напряжение на MOSFET -е при его выключении резко возрастает (из-за индуктивности катушки), то транзистор может перейти в режим лавинного пробоя ("avalanche breakdown "). Это происходит, если напряжение "сток-исток" $V_{DS}$ на MOSFET -е превышает его напряжение пробоя $V_{DS (BR)}$.
Для современных транзисторов работа в этом режиме является штатной (они маркируются как "Repetitive Avalanche Rated " или "100% AVALANCHE TESTED "). При этом важно учитывать такие лавинные характеристики транзистора как максимальный повторяющийся лавинный ток $I_{AR}$ и максимальная энергия повторяющегося лавинного пробоя $E_{AR}$.
Необходимо, чтобы максимальный ток в катушке перед выключением не превышал значения $I_{AR}$, а максимальная энергия, запасенная в катушке, не превышала значения $E_{AR}$. Энергия магнитного поля катушки определяется как ${E_M} = {{{L {I^2}} \over {2}}}$ (например, для катушки индуктивностью $L$ = 700 мкГн с током $I$ = 3 А энергия составит 3,2 мДж).

Параметры некоторых MOSFET :

Наименование $V_{DS (BR)}$, В $I_{AR}$, А $E_{AR}$, мДж
IRF540 100 28 15
IRF740 400 10 13
IRF840 500 8 13
FQP12N60C 600 12 22,5

Я использую MOSFET IRF840 , обладающий подходящими характеристиками:

Цоколевка IRF840 :

G - затвор, D - сток, S - исток

При лавинном пробое транзистора затухающий ток катушки проходит по участку "сток-исток MOSFET -а - батарея питания", обладающему малым сопротивлением, что приводит к замедлению затухания тока.

драйвер MOSFET

Управление MOSFET осуществляется с помощью оптопары PC817C (обладает быстродействием 3...4 мкс, выдерживает выходной ток 50 мА и напряжение в закрытом состоянии до 35 В) и дискретной транзисторной схемы:

цоколевка PC817 :

цоколевка BC547 /BC557 :

C - коллектор, B - база, E - эмиттер

Подобный драйвер описан в статье http://radiohlam.ru/raznoe/driver_polevikov.htm .

Я исследовал характеристики такого драйвера (при подаче на светодиод оптодрайвера напряжения 5 В через резистор 470 Ом):
ток потребления во "включенном" состоянии (MOSFET открыт) очень мал, в "выключенном" (MOSFET закрыт) - меняется от 5,8 до 12 мА при росте напряжения питания от 7 до 15 В; напряжение на выходе драйвера составляет 12,15 / 1,83 В ("вкл"/"выкл") при напряжении питания 13 В.

Детектор

В основе работы импульсного металлодетектора лежит принцип электромагнитной индукции - Electromagnetic Pulse Induction (EMI ).

Схема детектора моего металлоискателя:

Сигнал с поисковой катушки $L1$ через токоограничивающий резистор $R2$ поступает на включенные встречно-параллельно диоды $VD1$ и $VD2$, ограничивающие величину сигнала до ~ 1 В. Это ограничение не вносит заметной погрешности, так как для детектирования "мишени" имееет значение "хвостик" сигнала, напряжение на котором составляет малые доли вольта (вплоть до милливольт) - подтверждено моделированием:

Такой слабый сигнал для надежного детектирования необходимо усилить, для чего я использовал операционный усилитель $OP1$ LM358N , включенный по традиционной схеме неинвертирующего усилителя. Коэффициент усиления определяется выражением $1+ {R3 \over R4}$, при указанных номиналах элементов он составляет 570 .

Особенностью ОУ LMx58 является возможность однополярного питания (single supply ) - в отличие от, например, LM318 , LF356 , LF357 не требуется источник отрицательного напряжения.
Цоколевка LM358N (N - в DIP -корпусе):

Вид сигнала на выходе ОУ:

Для обработки сигнала с поисковой катушки я использую встроенный в микроконтроллер ATmega аналого-цифровой преобразователь.

На опорный вход АЦП VREF подается опорное напряжение u ref , равное 1,235 В, которое берется с эталонного источника LM385Z-1.2 (используется режим работы АЦП EXTERNAL ).
Цоколевка LM385Z :

На сигнальный вход АЦП ADC In подается усиленное операционным усилителем напряжение сигнала с поисковой катушки, ограниченное диодами VD1 и VD2 . АЦП дискретизирует сигнал с катушки в виде последовательности чисел (fast-time signal ) со значениями 0 (минимальный уровень, 0 В)...1023 (максимальный уровень u ref).

Наличие мишени вблизи катушки проявляется следующим образом:
(1023 - уровень сигнала, соответствующий перегрузке АЦП)

  • смещение точки A вправо;
  • увеличение интервала A -B ;
  • смещение кривой вверх.

Сравните этот график сигнала с приведенным выше:

Для определения наличия мишени выполняется вычисление суммы (slow-time signal ) заданного числа дискретизированных уровней сигнала, расположенных на одинаковых интервалах друг от друга, во временном "окне" (evaluation window ). При этом значения, расположенные ранее заданной при балансировке начальной точки, не учитываются (для повышения чувствительности ).


Затем выполняется интегрирование последовательности получаемых суммарных значений (интегратор эмулируется программно). Параметром фильтра является коэффициент $K$, который равен числу импульсов, приходящихся на постоянную времени интегратора.
Уровень сигнала на выходе интегратора анализируется в статическом режиме работы металлодетектора.

При работе металлодетектора в динамическом режиме результаты интегрирования дополнительно проходят через фильтр высоких частот (high-pass filter , HPF ), который эмулируется программно. Параметром фильтра является коэффициент $K$, который показывает, во сколько раз частота следования импульсов больше частоты среза фильтра.
На выходе фильтра получается сигнал, характеризующий динамику изменения RX -сигнала.

При превышении выходным сигналом порога - "нулевого" уровня, заданного при балансировке, срабатывает триггер - мишень считается обнаруженной и реализуется аудиовизуальная индикация.

Звуковая индикация

Я использую для звуковой индикации пьезоэлемент от автономного пожарного извещателя. Громкость звучания пьезоэлемента весьма причудливым образом зависит от частоты сигнала. Я смог найти набор частот 900 (самый слабый сигнал))- 1000 - 1100 (самый сильный сигнал), для которых громкость звучания увеличивается. Для управления звучанием пьезоэлемента, подключенного к контакту 11 платы, я используют таймер 2 Arduino.

Беззвучный режим (только светодиодная индикация) может быть активирован через меню настроек при влючении прибора.

Визуальная индикация

Для индикации я использую LCD -дисплей от мобильного телефона :

Дисплей для этого телефона - монохромный c разрешением 84×48:


Контроллер дисплея - Philips PCD8544 .
Подключение дисплея:

Вывод дисплея Вывод Arduino Назначение вывода дисплея
RST D10 сброс контроллера дисплея
CE (или CS) D09 разрешение ввода данных в контроллер дисплея
DC D05 режим ввода - данные/команды
Din D04 данные шины SPI
CLK (или SCLK) D03 команды шины SPI
VCC * напряжение питания (2,7 ... 3,3 В)
BL ** подсветка
GND GND "земля"

Существует два варианта дисплея LCD 5110 - с синим (именно такой я использую) или красным текстолитом:

* напряжения питания контроллера -
синий - строго 3,3 В (можно подключить к выводу 3V3 Arduino )
красный - по некоторым непроверенным сведениям выдерживает напряжение питания 5 В (можно питать от выводов 5V или 3V3 Arduino )
** напряжение питания подсветки -
синий - на вывод подсветки можно подать напряжение 3,3 или 5 В
красный - на вывод подсветки подключается "земля" (?)

Проблемой такого дисплея является ненадежный контакт ЖК-панели с печатной платой посредством соединителя ZEBRA , который устраняется, например, припаиванием проводника, прижимающего панель к плате - как рекомендовано :

Если эту проблему не устранить, то она приводит к "почернению" экрана, требующей повторной инициализации.

Для работы с таким дисплеем в Arduino я использую библиотеку Adafruit-PCD8544 от Adafruit Industries .

Выключатель (5) управляет подсветкой экрана. При хорошем внешнем освещении подсветку дисплея можно не использовать, так как она потребляет заметную мощность.

Дискриминация мишеней

Вихревые токи затухают из-за наличия электрического сопротивления у "мишени". Это затухание описывается экспоненциальным законом $i = k H_0 {e^{ {-t} \over \tau}}$. Коэффициент $k$ определяется формой и размерами "мишени". Постоянная времени $\tau = {L G} = {L \over R}$, определяющая длительность протекания вихревых токов, определяется электрической проводимостью материала мишени $G$ (или сопротивлением $R$) и ее индуктивностью $L$.
В таблице я привел относительную электрическую проводимость различных материалов по отношению к золоту:

Вихревые токи применяются для исследования свойств материалов посредством измерения электрической проводимости, так как материалы имеют уникальное значение проводимости в зависимости от их состава и способа изготовления. В качестве стандарта используется при этом значение проводимости химически чистой меди при температуре 20 ºC - стандарт International Annealed Copper Standard (IACS ) - удельное сопротивление 1,7241x10 -8 Ом·м или 5,8001x10 7 См/м (100% IACS ). Железо, например, имеет значение проводимости, равное 18% от проводимости меди.

Как утверждается (например, в статье исследователя Reg Sniff) , мишени из золота или из тонкой фольги имеют очень малую постоянную времени и вихревые токи в них быстро затухают, в отличие от мишеней из железа, меди или серебра.

Начальная напряженность магнитного поля $H_0$ определяется начальным током в катушке и уменьшается по кубическому закону $1 \over {h^3}$ при удалении от катушки. Величина напряженности магнитного поля $H_0$ вдоль оси катушки на расстоянии $z$ от ее центра, создаваемого током $I_0$, определяется выражением: ${H_0} = { {w {R^2} {I_0}} \over {2 { {({R^2}+{z^2})}^{3 \over 2} } } }$.

Вихревые токи создают собственное затухающее магнитное поле, которое наводит экспоненциально затухающее (с той же постоянной времени $\tau$) напряжение в поисковой катушке. Величина этого напряжения уменьшается как шестая степень расстояния $1 \over {h^6}$ при удалении "мишени" от катушки. Это приводит к удлинению импульса напряжения на поисковой катушке, что и регистрируется металлодетектором.

Дополнительный анализ кривой сигнала (напряжения на поисковой катушке) может быть выполнен с целью дискриминации (выделения разных типов) мишеней. Наклон кривой в ее начале можно оценить отношением $K = {{x_t} \over {x_{t+{\Delta}t}}}$ величин выборок, отделенных, например, пятью интервалами (${\Delta}t=5$). При этом постоянная времени определяется выражением: ${\tau} = {{{\Delta}t} \over {ln K}}$

Для иссследования вихревых токов могут использоваться программные пакеты для моделирования электромагнитных процессов. В качестве примера можно привести моделирование электромагнитного тормоза на вихревых токах в пакете COMSOL Multiphysics (описание - https://www.comsol.com/blogs/simulating-eddy-current-brakes/):

Существуют отрицательные мнения по поводу возможности эффективной дискриминации для импульсных металлодекторов.

"The most reliable discriminator is you, by digging the target!" (http://www.gold-prospecting-wa.com) - "Самый надежный дискриминатор - это вы, при выкапывании мишени" .

В книге "" авторов Ahmet S. Turk, Koksal A. Hocaoglu, Alexey A. Vertiy

приведены следующие утверждения:


"Важнейшим недостатком импульсных металлодетекторов является невозможность лёгкой дискриминации между различными типами металлов. ... Если размеры и глубина детектируемых металлических объектов различны и неизвестны, то в общем случае невозможно определить тип металла".

В качестве примера импульсного металлодетектора, для которого заявлена возможность дискриминации (ферромагнитные (FERROUS )/неферромагнитные (N-FERROUS ) материалы), можно привести модель PULSE STAR II .
Особенности дискриминации в таком детекторе:

  • возможна только для мишеней не менее 10 см в диаметре (в отличие от VLF/TR -детекторов, которые обладают способностью дискриминации даже для маленьких объектов);
  • объекты меньшего размера отображаются как ферромагнитные;
  • несколько маленьких неферромагнитных объектов отображаются как один большой ферромагнитный.

Моя статья на Хабре о применении нейросети для дискриминации в импульсном металлодетекторе - https://habr.com/ru/post/435884/

Работа над проектом продолжается

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Датский инженер Dzl, вместе со своим сыном собрали себе металлоискатель на базе контроллера Arduino.

Схема:


Частота работы генератора на транзисторе 2n222 зависит от индуктивности поисковой катушки и в отсутствии металла равна ~160кГц (это при авторских параметрах схемы - ёмкость конденсаторов у катушки по 22н и катуша диаметром 15см в 30 витков).
При приближении металлических предметов(особенно железа), индуктивность катушки меняется, меняется и частота генератора, за которой на pin 5 следит программа на Arduino.
Начальное нажатие NULL SW (pin 12) записывает эталонную частоту(начальная калибровка в отсутствии металла вблизи катушки).
При изменении частоты, пьезоизлучатель (pin 13) издаёт «щелчки», которые тем чаще, чем ближе металл.

Скетч:
// Arduino based metal detector // (C)Dzl july 2013 // http://dzlsevilgeniuslair.blogspot.dk/ // Connect search coil oscillator (20-200kHz) to pin 5 // Connect piezo between pin 13 and GND // Connect NULL button between pin 12 anf GND // REMEMBER TO PRESS NULL BUTTON AFTER POWER UP!! #define SET(x,y) (x |=(1<10000) clf=10000; FTW=clf; } //-Click generator if(millis()>timer) { timer+=10; PCW+=FTW; if(PCW&0x8000) { digitalWrite(13,HIGH); PCW&=0x7fff; } else digitalWrite(13,LOW); } }

Был разработан на основе уже известного устройства "Терминатор Про". Основным его преимуществом является качественная дискриминация, а также малое потребление тока. Также сборка прибора обойдется не дорого, а работать он способен на любых типах грунтов.

Вот краткие характеристики устройства
По принципу работы металлоискатель относится и импульсно-балансному.
Рабочая частота составляет 8-15 кГц.

Что касается режима дискриминации, тот тут используется двух тональная озвучка. При обнаружении железа устройство подает низкий сигнал, а если попадется цветной металл, тон будет высоким.

Питается аппарат от источника в 9-12В.

Также присутствует возможность регулировки чувствительности и есть ручная отстройка от грунта.

Ну а теперь о главном, о глубине обнаружения металлоискателя. Прибор способен обнаруживать монеты диаметром 25 мм на расстоянии в 35 см по воздуху. Золотое кольцо можно поймать на расстоянии 30 см. Каску прибор обнаруживает на расстоянии порядка 1-го метра. Максимальная глубина обнаружения составляет 150 см. Что касается потребления, то без звука это порядка 35 мА.

Материалы и инструменты для сборки:

- минидрель (у автора самодельная из моторчика);
- провод для наматывания катушки;
- четырех жильный экранированный кабель;
- паяльник с припоем;
- материалы для изготовления корпуса;
- печатная плата;
- все необходимые радиодетали и их номиналы можно увидеть на фото схемы.


Процесс изготовления металлоискателя:

Шаг первый. Изготовление платы
Плата изготавливается методом травления. Далее можно сверлить отверстия, их диаметр составляет 0.8 мм. Для этих целей автор использует маленький моторчик с установленным сверлом.






Шаг второй. Сборка платы
Сборку нужно начинать с впаивания перемычек. После этого можно устанавливать панели под микросхемы и прочие впаивать прочие элементы. Очень важно иметь для качественной сборки тестер, который может замерить емкость конденсаторов. Поскольку в приборе используется два одинаковых канала усиления, то усиление по ним должно быть как можно ближе к одному значению, то есть быть одинаковым. На обоих каналах одного каскада должны быть одинаковые показания при измерении тестером.

Как выглядит уже собранная схема, можно увидеть на фото. Автор не стал устанавливать узел, определяющий степень разрядки аккумулятора.








После сборки плату нужно проверить тестером. Нужно подключить к ней питание и проверить все стратегически важные входы и выходы. Везде питание должно быть точно таким, как на схеме.

Шаг третий. Собираем катушку
Датчик DD собирается по тому же принципу, что и для всех подобных балансников. Передающая катушка обозначается буквами TX, а приемная RX. Всего нужно сделать 30 витков проводом, сложенным вдвое. Провод используется эмалированный, диаметром 0.4 мм. И приемная, и передающая катушка формируются двойными проводами, в итоге на выходе должно получиться четыре провода. Далее тестером нужно определить плечи обмоток и соединить начало одного плеча с концом другого, в итоге образуется средний вывод катушки.

Для фиксирования катушки после наматывания нужно хорошо обмотать нитками и затем пропитать лаком. После того как лак засохнет, катушки обматываются изолентой.

Впоследствии сверху делается экран из фольги, между началом и концом нужно сделать зазор порядка 1 мм, чтобы избежать короткозамкнутого витка.



Средний вывод ТХ необходимо подключить к земле платы, иначе не запустится генератор. Что касается среднего выхода RX, то он нужен для настройки по частоте. После настройки резонанса его нужно заизолировать и приемная катушка превращается в обычную, то есть без вывода. Что касается приемной катушки, то ее подключают вместо передающей и настраивают на 100-150 Гц ниже, чем предающая. Каждую катушку нужно настраивать отдельно, при настройке возле катушки не должно быть никаких металлических предметов.

Чтобы свести баланс, катушки сдвигают, как можно увидеть на фото. Баланс должен находиться в пределах 20-30 мв, но не более 100 мв.

Рабочие частоты прибора находятся в пределе от 7 кГц, до 20 кГц. Чем ниже будет частота, тем глубже будет брать прибор, но при низкой частоте дискриминация становится хуже. И наоборот, чем выше частота, тем лучше дискриминация, но при этом меньше глубина обнаружения. Золотой серединой можно считать частоту 10-14 кГц.

Для подключения катушки используется четырех жильный экранированный провод. экран подключается к корпусу, два провода идут идут на передающую катушку и два на приемную.

Когда-то, построив своими руками несколько металлоискателей различной степени работоспособности, я захотел изучить как работает схема Ардуино в этом направлении.

Есть несколько хороших примеров того, как собрать металлоискатель своими руками. Однако, для них обычно необходимо либо довольно много внешних компонентов для обработки аналогового сигнала, либо чувствительность на выходе довольно слабая.

Когда мы думаем об импульсных металлодетекторах, основной темой является то, как фиксировать небольшие изменения напряжения в сигналах, связанных с поисковой катушкой. Эти изменения обычно очень малы. Наиболее очевидный подход заключается в использовании аналоговых входов «ATmega328». Но, глядя на спецификации, есть две основные проблемы: они в основном медленные, а разрешение (в большинстве случаев) низкое.

С другой стороны, металлоискатель на микроконтроллере работает на частоте 16 МГц и имеет довольно неплохие возможности синхронизации, а именно разрешение 0,0625 мкс при использовании тактовой частоты. Таким образом, вместо того, чтобы использовать аналоговый вход для считывания, самым простым способом восприятия небольших динамических изменений напряжения является сравнение изменения падения напряжения с течением времени при фиксированном опорном напряжении.

Для этой цели ATmega328 имеет подходящие особенности внутреннего компаратора между D6 и D7. Этот компаратор способен инициировать прерывание, что позволяет точно обрабатывать события. Используя его вместе с аккуратно закодированными процедурами синхронизации, такими как millis () и micos (), а также используя внутренний таймер ATmega328 с гораздо более высоким разрешением, Arduino — отличная основа для подобного рода металлоискателя.

Таким образом, говоря об исходном коде — хорошим началом было бы программирование внутреннего компаратора для «изменения» полярности входов и использование внутреннего счетчика с максимальной скоростью, возможной для изменения периодичности изменений.

Итоговый вариант кода для Arduino:

// Defining all required pre variables etc. and setting up the registers unsigned char clockSelectBits = _BV(CS10); // no prescale, full xtal void setup() { pinMode(6,INPUT); // + of the comparator - by setting them as INPUT, they are // set to high impedance pinMode(7,INPUT); // - of the comparator - by setting them as INPUT, they are // set to high impedance cli(); // stop interrupts TCCR1A = 0; // set entire TCCR1A register to 0 TCCR1B = 0; // same for TCCR1B TCNT1 = 0; // initialize counter value to 0; TCCR1B |= clockSelectBits; // sets prescaler and starts the clock TIMSK1 = _BV(TOIE1); // sets the timer overflow interrupt enable bit sei(); //allow interrupts ACSR = (0 << ACD) | // Analog Comparator: Enabled (0 << ACBG) | // Analog Comparator Bandgap Select: AIN0 is applied to the positive input (0 << ACO) | // Analog Comparator Output: Off (1 << ACI) | // Analog Comparator Interrupt Flag: Clear Pending Interrupt (1 << ACIE) | // Analog Comparator Interrupt: Enabled (0 << ACIC) | // Analog Comparator Input Capture: Disabled (0 << ACIS1 | 0 << ACIS0 // interrupt on output toggle // (0 << ACIS1 | 1 << ACIS0 // reserved // (1 << ACIS1 | 0 << ACIS0 // interrupt on falling output edge // (1 << ACIS1 | 1 << ACIS0 // interrupt on rising input edge ; } // this routine is called every time the comparator creates an interrupt ISR(ANALOG_COMP_vect) { oldSREG=SREG; cli(); timeStamp=TCNT1; SREG = oldSREG; } // this routine is called every time there is an overflow in internal counter ISR(TIMER1_OVF_vect){ timer1_overflow_count++; } // this routine is used to reset the timer to 0 void resetTimer(void){ oldSREG = SREG; cli(); // Disable interrupts TCNT1 = 0; //initialize counter value to 0 SREG = oldSREG; // Restore status register TCCR1B |= clockSelectBits; // sets prescaler and starts the clock timer1_overflow_count=0; // resets overflow counter }

Конечно, эта идея не совсем новая. Основная часть этого кода может быть другой. Попробуйте поискать в других источниках, например TPIMD.

Шаг 1: Идея индукционного детектора на Arduino — флип-катушка


Идея состоит в том, чтобы использовать Arduino как детектор импульсной индукции, как и в TPIMD, поскольку задумка с кривой затухания, похоже, работает очень хорошо. Проблема с импульсными индукционными детекторами заключается в том, что они обычно нуждаются в разном напряжении для работы. Одно напряжение для питания катушки и отдельное напряжение для обработки кривой затухания. Эти два источника напряжения всегда усложняют процесс постройки импульсных индукционных детекторов.

Рассматривая напряжение катушки в детекторе PI, полученную кривую можно разделить на две разные стадии. Первый этап — это сам импульс, питающий катушку и создающий магнитное поле (1). Второй этап — это кривая спада напряжения, начиная с пика напряжения, а затем быстро изменяясь на «безмощностное» напряжение катушки(2).

Проблема в том, что катушка меняет свою полярность после импульса. Если импульс положительный (Var 1. на прилагаемом рисунке) кривая распада отрицательна. Если импульс отрицательный, кривая затухания будет положительной (Var 2. на прилагаемом рисунке).

Чтобы решить эту основную проблему, катушку нужно «перевернуть» электронным путем после импульса. В этом случае импульс может быть положительным, и кривая затухания также останется положительной.

Для этого катушка должна быть изолирована от Vcc и GND после импульса. В этот момент существует только ток, протекающий через демпфирующий резистор. Эта изолированная система катушки и демпфирующего резистора может быть «ориентирована» на любое опорное напряжение. Это теоретически создаст комбинированную положительную кривую (см. нижнюю часть чертежа).

Эта положительная кривая может быть использована с помощью компаратора для определения момента времени, когда напряжение затухания «пересекает» опорное напряжение. В случае, если сокровища вблизи катушки, изменяется кривая затухания и точка пересечения времени изменения опорного напряжения. Это изменение может быть обнаружено.

После некоторых экспериментов я остановился на следующей схеме:

Схема состоит из модуля Arduino Nano. Этот модуль управляет двумя МОП-транзисторами, питающими катушку (на SV3) через D10. Когда импульс на конце D10 заканчивается, оба МОП-транзистора изолируют катушку от 12V и GND.

Сохраненная энергия в катушке выходит через резистор R2 (220 Ом). В то же время резистор R1 (560 Ом) соединяет первую положительную сторону катушки с GND. Это изменяет отрицательную кривую затухания на резисторе R5 (330 Ом) до положительной кривой. Диоды защищают входной вывод Arduino.

R7 является делителем напряжения около 0,04 В. В настоящее время кривая затухания на D7 становится более отрицательной, чем 0,04 на D6, прерывание срабатывает, а длительность после окончания импульса сохраняется.

В случае металла вблизи катушки кривая затухания длится дольше, а время между окончанием импульса и прерыванием увеличивается.

Шаг 2: Строим детектор (макет)






Процесс построения детектора довольно прост. Это можно сделать либо на макете (придерживаясь оригинальной схемы), либо используя пайку деталей на печатной плате.

Светодиод D13 на плате Arduino Nano используется в качестве индикатора для металла.

Использование макета — самый быстрый способ сделать работающий детектор. Нужно провести некоторую проводку, но это может быть сделано на отдельном маленьком макете. На снимках это показано в 3 этапа, так как Arduino и МОП-транзисторы скрывают некоторые из проводов. При тестировании я случайно отключил диоды, не заметив сразу. Это особо не повлияло на поведение детектора. В версии на печатной плате я их оставил.

На рисунках не показаны подключения к OLED-дисплею 0,96. Этот дисплей подключен таким образом:

Vcc — 5В (на выводе Arduino, а не на блоке питания!)
GND — GND
SCL — A5
SDA — A4

Этот OLED-дисплей необходим для первоначальной калибровки детектора. Это делается путем установки правильного напряжения на PIN6 Arduino. Это напряжение должно быть около 0,04 В. Дисплей помогает установить правильное напряжение.

Макетная версия работает очень хорошо, хотя, вероятно, не подходит использования в полевых условиях.

Шаг 3: Проект на печатной плате




Что касается пайки, мне не очень нравится двухсторонняя высокотехнологичная печатная плата, поэтому я изменил схему для односторонней.

Сделаны следующие изменения:

  1. Диоды были исключены.
  2. На контакты МОП-транзисторов добавлен резистор 10 Ом
  3. Напряжение питания делителя напряжения на D6 задается сигналом высокого уровня на D8
  4. Пин драйвера для МОП-транзисторов был изменен.

Таким образом можно создать одностороннюю печатную плату, которая может быть спаяна на универсальной печатной плате. Используя эту схему, вы получите рабочий PI-детектор с 8-10 внешними компонентами (в зависимости от того, используется ли OLED-дисплей и / или динамик).

Шаг 4: Настройка и использование детектора




Если детектор правильно построен и программа записана в Arduino, самым простым (если не единственным) способом настройки устройства является использование OLED-дисплея. Дисплей подключен к 5V, GND, A4, A5. Дисплей должен показывать «калибровку» после включения питания устройства. Через несколько секунд он должен сказать «калибровка окончена», и на дисплее должны отобразиться три цифры.

Первое число — это «контрольное значение», указанное во время калибровки. Второе значение — это последнее измеренное значение, а третье значение — среднее значение последних 32 измерений.

Эти три значения должны быть более или менее одинаковыми (в моих тестах до 1000). Среднее значение должно быть более или менее стабильным.

Чтобы начать первоначальную настройку, рядом с катушкой не должно быть металла.

Теперь делитель напряжения (подстроечный резистор) должен быть выставлен таким образом, чтобы нижние два значения были установлены на максимум, сохраняя при этом стабильное показание. Существует критическая настройка, когда среднее значение начинает давать странные показания. Поверните триммер, чтобы снова получить стабильные значения.

Может случиться, что дисплей зависает. Просто нажмите кнопку сброса и начните заново.

Для моей конфигурации (катушка: 18 оборотов\20 см) стабильное значение составляет около 630-650. После установки нажмите кнопку сброса, аппарат снова откалибрует и все три значения будут в одном диапазоне. Если металл теперь поднести к катушке, светодиод на плате Arduino (D13) должен загореться. Прилагаемый динамик издает несколько щелчков (в исходном коде есть пространство для улучшений).

Во избежание высоких ожиданий:

Детектор обнаруживает некоторые вещи, но он остается очень простым и ограниченным.

Чтобы дать представление о возможностях, я сравнил некоторые другие детекторы со своими. Результаты по-прежнему весьма впечатляют для детектора с 8 внешними элементами, но не дотягивают до профессионального оборудования.

Глядя на схему и программу, я вижу много возможностей для улучшения. Значения резисторов были подобраны исходя из опыта, время импульса 250 мс было выбрано случайным образом, параметры катушки тоже.

Файлы

Шаг 5: Подключение дисплея 16х2



Во время тестирования я понял, что библиотека для OLED-дисплея I2C потребляла слишком много ресурсов, поэтому я решил использовать 16×2-дисплей с конвертером I2C.

Я адаптировал программу для ЖК-дисплея, добавив некоторые полезные функции. В первой строке дисплея теперь отображается уровень сигнала возможной индикации. Вторая строка теперь показывает два значения. Первое указывает на отклонение текущего сигнала по сравнению с калибровочным значением. Это значение должно быть «0». Если это значение постоянно отрицательное или положительное, детектор должен быть откалиброван нажатием кнопки сброса. Положительные значения указывают на металл вблизи катушки.

Второе значение показывает фактическое значение задержки кривой затухания. Это значение обычно не так интересно, но оно необходимо для первоначальной настройки детектора.

Теперь программа позволяет отслеживать множественные длительности импульсов в последовательности (средство для экспериментов / улучшения производительности). Тем не менее, я не добился какого-нибудь прорыва, поэтому значение по умолчанию установлено на одну длительность импульса.

Начальная настройка детектора

При настройке детектора важно второе значение второй строки (первое можно игнорировать). Первоначально значение может быть «неустойчивым» (см. Рисунок). Поверните подстроечный резистор, пока значение не достигнет стабильного показания. Затем поверните его, чтобы увеличить значение до максимального стабильного значения. Нажмите кнопку сброса для повторной калибровки, и детектор готов к использованию.

У меня сложилось впечатление, что, установив максимальную стабильную величину, я потерял чувствительность к цветным металлам. Поэтому, возможно, стоит поэкспериментировать с настройками, чтобы это исправить.

Катушки

Я сделал 3 катушки для дальнейшего тестирования схемы импульсного металлоискателя:

  • 1 -> 18 витков/ 200 мм
  • 2 -> 25 витков/100 мм
  • 3 -> 48 витков/100 мм

Интересно, что все катушки работали довольно хорошо, с почти одинаковой производительностью (рублевая монета на 40-50 мм в воздухе). Это может быть весьма субъективное наблюдение.

Переработанная версия всеми известного импульсного металлоискателя - "Пирата", но на Arduino. Имеет неплохую чувствительность даже на мелкие монеты. Стабилен в не зависимости от температуры и заряда батареи. Схема максимально упрощена.

Из недостатков можно отметить отсутствие возможности определять тип металла. Определять тип могут только металлоискатели с радио излучающим принципом детектирования (сложны в устройстве и требуют точной настройки). Импульсный металлоискатель в свою очередь работает на магнитном детектировании индукционных токов в металле. Индукция при поиске не различима для черный и цветных металлов.

К слову сказать, что есть еще третий тип металлоискателей - частотный. Малоэффективная и очень простая конструкция в основе которой генератор колебаний магнитного контура, который чувствителен к изменению величины индукции катушки. Мы ее рассматривать не будем из-за низкой чувствительности. Личный эксперименты по разработке такой конструкции в лучшем случае позволяли детектировать сковородку на 20 см глубины. На монет реагировал только в "упор". Практически бесполезная штука. По тому от нее сразу отказался.


Наша схема импульсного металлоискателя имеет в себе несколько основных компонентов. Arduino генерирует импульсы, они усиливаются полевым транзистором (силовым ключом) который в свою очередь индуцирует импульсы магнитное поле в катушке. Магнитный импульс проходит до искомого металла и индуцирует в нем ток, а затем обратный сигнал магнитного поля. Этот обратный магнитный поток через небольшую задержку возвращается обратно в катушку металлодетектора и генерирует импульс. Сигнал проходит мимо пары диодов (диоды нужны что бы ограничить напряжение до 1 вольта) и уходит на вход операционного усилителя. Усиленный сигнал попадает в arduino в котором высчитывается "спадающий хвост" после отключения катушки силовым ключем. Т.е. как раз ответ от искомого металлического предмета. В зависимости от времени спада мы можем судить о величине или удаленности объекта. Индикатор показывает эту величину в 8-и уровнях индикаторов.

К слову о катушке. Она должна быть диаметром 20 см с 20-ю витками провода 0,4 - 0,8 мм. Толщина провода так же влияет на индукцию всей катушки. Сильное отклонение от толщины провода приведет к ухудшению чувствительности прибора. Катушка вставлена в водопроводную ПВХ трубу и не имеет никаких дополнительных металлический соединений.



Скетч программы содержит генератор импульсов и алгоритм обработки входящего сигнала с усилителя.

Int ss0 = 0; int ss1 = 0; int ss2 = 0; long c0 = 0; long c1 = 0; long c2 = 0; byte i = 0; int sss0 = 0; int sss1 = 0; int sss2 = 0; int s0 = 0; int s1 = 0; int s2 = 0; void setup() { DDRB = 0xFF; // port B - all out DDRD = 0xFF; // port D - all out for (i = 0; i <255; i++) // калибровка { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); c0 = c0 + s0; c1 = c1 + s1; c2 = c2 + s2; delay(3); } c0 = c0 / 255; c0 = c0 - 5; c1 = c1 / 255; c1 = c1 - 5; c2 = c2 / 255; c2 = c2 - 5; } void loop() { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); ss0 = s0 - c0; if (ss0 < 0) { sss0 = 1; } ss0 = ss0 / 16; PORTD = ss0; // посылаем на индикатор (send to LEDs) delay(1); ss1 = s1 - c1; if (ss1 < 0) { sss1 = 1; } ss1 = ss1 / 16; PORTD = ss1; // посылаем на индикатор (send to LEDs) delay(1); ss2 = s2 - c2; if (ss2 < 0) { sss2 = 1; } ss2 = ss2 / 16; PORTD = ss2; // посылаем на индикатор (send to LEDs) delay(1); if (sss0+sss1+sss2 > 2) { digitalWrite(7,HIGH); digitalWrite(6,HIGH); digitalWrite(5,HIGH); digitalWrite(4,HIGH); digitalWrite(3,HIGH); digitalWrite(2,HIGH); digitalWrite(1,HIGH); digitalWrite(0,HIGH); delay(1); sss0 = 0; sss1 = 0; sss2 = 0; } }






  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то