Прибор для проверки кварцевых резонаторов. Прибор для проверки частоты кварцев. Отличительные особенности частотомеров линейки FC1100 в частности

Поводом для создания этого прибора послужило немалое количество накопившихся кварцевых резонаторов как купленных, так и выпаянных с разных плат, причём на многих отсутствовали всякие обозначения. Путешествуя по бескрайним просторам интернета и пробуя собрать и запустить различные , было решено придумать что-нибудь своё. После многих экспериментов с разными генераторами как на разных цифровых логиках, так и на транзисторах, остановил выбор на 74HC4060, правда устранить автоколебания тоже не удалось, но как оказалось при работе устройства это не создаёт помехи.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек - для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия - для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц .

О деталях устройства

Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор "Винстар" однострочный WH1601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме WH1601A можно применить WH1602B - двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h21. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.

Настройка прибора

При настройке кнопкой S1 включить режим НЧ (загорится светодиод VD1) и воткнув в соответствующий разъём кварцевый резонатор на 32768Гц (желательно с материнской платы компьютера) подстроечным конденсатором С11 установить на индикаторе частоту 32768Гц. Резистором R8 устанавливается максимальная чувствительность. Все файлы - платы, прошивки, даташиты на используемые радиоэлементы и другое, скачайте в архиве . Автор проекта - nefedot .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ЧАСТОТЫ КВАРЦЕВ

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас - это просто волны. Но есть и другие варианты использования данных знаний, и одна из них - это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений - в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество - легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон - 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное - соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 - 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ - этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой - и тогда работа кварцевого резонатора будет меньше беспокоить.

Поводом для создания этого прибора послужило немалое количество накопившихся кварцевых резонаторов как купленных, так и выпаянных с разных плат, причём на многих отсутствовали всякие обозначения. Путешествуя по бескрайним просторам интернета и пробуя собрать и запустить различные схемы кварцевых тестеров, было решено придумать что-нибудь своё. После многих экспериментов с разными генераторами как на разных цифровых логиках, так и на транзисторах, остановил выбор на 74HC4060, правда устранить автоколебания тоже не удалось, но как оказалось при работе устройства это не создаёт помехи.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек - для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия - для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц. О деталях устройства Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор "Винстар" однострочный WH1601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме WH1601A можно применить WH1602B - двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h21. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.

Настройка прибора

При настройке кнопкой S1 включить режим НЧ (загорится светодиод VD1) и воткнув в соответствующий разъём кварцевый резонатор на 32768Гц (желательно с материнской платы компьютера) подстроечным конденсатором С11 установить на индикаторе частоту 32768Гц. Резистором R8 устанавливается максимальная чувствительность. Все файлы - платы, прошивки, даташиты на используемые радиоэлементы и другое, скачайте в архиве. Автор проекта- nefedot.

АРХИВ:

Сразу хотелось бы сказать, что проверить кварцевый резонатор с помощью мультиметра не получится . Для проверки кварцевого резонатора с помощью осциллографа необходимо подключить щуп к одному из выводов кварца, а земляной крокодил к другому, но такой способ не всегда даёт положительный результат , далее описано почему.
Одна из основных причин выхода из строя кварцевого резонатора - банальное падение, поэтому если перестал работать пульт от телевизора, брелок от сигнализации автомобиля, то первым делом необходимо его проверить. Проверить генерацию на плате не всегда получается потому, что щуп осциллографа имеет некоторую ёмкость, которая обычно составляет около 100pF, то есть, подключая щуп осциллографа, мы подключаем конденсатор номиналом 100pF. Так как номиналы ёмкостей в схемах кварцевых генераторов составляют десятки и сотни пикофарад, реже нанофарады, то подключение такой ёмкости вносит значительную ошибку в расчётные параметры схемы и соответственно может привести к срыву генерации. Ёмкость щупа можно уменьшить до 20pF, если установить делитель на 10, но и это не всегда помогает.

Исходя из выше написанного можно сделать вывод, что для проверки кварцевого резонатора нужна схема, при подключении к которой щупа осциллографа не будет срываться генерация, то есть схема должна не чувствовать ёмкость щупа. Выбор пал на генератор Клаппа на транзисторах, а для того чтобы не срывалась генерация к выходу подключён эмиттерный повторитель.


Если поставить плату на просвет видно, что с помощью сверла получаются аккуратненькие пятачки, если сверлить шуруповёртом, то почти аккуратненькие). По сути это тот же монтаж на пятачках, только пятачки не наклеиваются, а сверлятся.


Фотографию сверла можно увидеть ниже.


Теперь давайте перейдём непосредственно к проверке кварцев. Сначала возьмём кварц на 4.194304MHz.


Кварц на 8MHz.


Кварц на 14.31818MHz.


Кварц на 32MHz.


Хотелось бы несколько слов сказать про гармоники, Гармоники - колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может!!!

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.


Главная особенность данного частотомера:
применён высокостабильный TCXO (Термо-Компенсированный Опорный Генератор). Применение технологии TCXO, позволяет сразу, без предварительного прогрева, обеспечивать заявленную точность измерения частот.

Технические характеристики частотомера FC1100-M3:

параметр минимум норма максимум
Диапазон измеряемых частот 1 Гц. - 1100 МГц.
Дискретность отсчета частоты от 1 до 1100 МГц - 1 кГц. -
Дискретность отсчета частоты от 0 до 50 МГц - 1 Гц. -
Уровень входного сигнала для входа "A" (от 1 до 1100 МГц). 0,2 В.* 5 В.**
Уровень входного сигнала для входа "B" (от 0 до 50 МГц). 0,6 В. 5 В.
Период обновления показаний - 1 раз/сек -
Тестирование кварцевых резонаторов 1 МГц - 25 МГц
Напряжение питания/потребляемый ток (Mini-USB) +5В./300мА
Стабильность частоты @19,2МГц, при температуре -20С...+80С 2ppm (TCXO)

Отличительные особенности частотомеров линейки FC1100 в частности:

Высокостабильный опорный генератор TCXO (стабильность не хуже +/-2 ppm).
Заводская калибровка.
Независимое одновременное измерение двух частот (Вход "A" и Вход "B").
Вход "B": Обеспечивает дискретность измерения частоты 1 Гц.
Вход "B" имеет полноценный аналоговый регулятор порога срабатывания входного компаратора (MAX999EUK), что даёт возможность измерять в том числе и зашумленные гармониками сигналы, отстраивая порог срабатывания компаратора в чистый участок периодического сигнала.
Вход "A" позволяет дистанционно измерять частоту портативных УКВ радиостанций на расстоянии нескольких метров, при использовании короткой антенны.
Функция быстрого тестирования кварцевых резонаторов от 1 до 25 МГц.
Современный TFT цветной дисплей с экономичной подсветкой.
Изготовитель не использует ненадежные электролитические конденсаторы. Вместо них применяются современные высококачественные SMD керамические конденсаторы значительных емкостей.
Унифицированное питание через разъём Mini-USB (+5v). Шнур питания Mini-USB - поставляется в комплекте.
Конструктив частотомера оптимизирован для встраивания в плоскую переднюю панель любого корпуса. В комплекте поставляются нейлоновые изолирующие стойки М3*8мм., для обеспечения зазора между передней панелью и печатной платой частотомера.
Изготовитель гарантирует, что не используются технологии запрограммированного старения, широко распространившиеся в современной технике.
Изготавливается в России. Мелкосерийное производство. Контроль качества на каждом этапе производства.
При производстве используются лучшие паяльные пасты, безотмывочные флюсы и припои.
С 22 ноября 2018 г. в продаже частотомер FC1100-M3. Вот его ВСЕ отличия и преимущества:
Повышена стабильность работы входного компаратора, его чувствительность, линейность.
Обновлена прошивка. Оптимизирована работа схемы.
По многочисленным просьбам в комплект добавлен переходник SMA-BNC, позволяющий пользоваться многочисленными стандартными кабелями, в том числе и осциллографическими щупами с разъёмами BNC.

Габариты печатной платы прибора FC1100-M3: 83мм*46мм.
Дисплей цветной TFT LCD с подсветкой (диагональ 1,44" = 3,65см).
* Чувствительность по DataSheet MB501L (параметр "Input Signal Amplitude": -4,4dBm = 135 мВ@50 Ом соответственно).
** Верхний предел входного сигнала ограничен мощностью рассеивания защитных диодов B5819WS (0,2 Вт*2 шт).


Обратная сторона частотомера FC1100-M3

Режим измерения частоты кварца в частотомерах FC1100-M2 и FC1100-M3


Схема компаратора/формирователя входного сигнала 0...50 МГц.

Схема делителя частоты входного сигнала 1...1100 МГц.

Краткое описание частотомера FC1100-M3:

Частотомер FC1100-M3 имеет два раздельных канала измерения частоты.
Оба канала частотомера FC1100-M3 работают независимо друг от друга, и могут использоваться для измерения двух различных частот одновременно.
При этом, оба значения измеренной частоты одновременно отображаются на дисплее.
"Вход A" - (Тип разъёма SMA-FEMALE) Предназначен для измерения относительно высокочастотных сигналов, от 1 МГц до 1100 МГц. Нижний порог чувствительности этого входа составляет чуть менее 0,2 В., а верхний порог - ограничивается на уровне 0,5...0,6 В. защитными диодами, включенными встречно-параллельно. Нет смысла подавать на этот вход значительные напряжения, ибо напряжения, выше порога открывания защитных диодов будут ограничиваться.
Примененные диоды позволяют рассеивать мощность не более 200 мВт., защищая вход микросхемы делителя MB501L. Не подключайте этот вход непосредственно к выходу передатчиков значительной мощности (более 100 мВт). Для измерения частоты источников сигнала амплитудой более 5 В., или значительной мощности - используйте внешний делитель напряжения (аттенюатор) или переходной конденсатор малой ёмкости (единицы пикофарад), включенный последовательно. При необходимости измерения частоты передатчика - обычно достаточно короткого отрезка провода в качестве антенны, включенного в разъём частотомера, и расположенного на небольшом расстоянии от антенны передатчика или можно использовать подходящую антенну "резинка" от портативных радиостанций, подключенную к разъёму SMA.

"Вход B" - (Тип разъёма SMA-FEMALE) Предназначен для измерения относительно низкочастотных сигналов, от 1 Гц до 50 МГц. Нижний порог чувствительности этого входа ниже, чем у "Входа A", и составляет 0,6 В., а верхний порог - ограничивается защитными диодами на уровне 5 В.
При необходимости измерения частоты сигналов, амплитудой более 5 В., используйте внешний делитель напряжения (аттенюатор). На этом входе использован высокоскоростной компаратор MAX999.
Входной сигнал подается на неинвертирующий вход компаратора, и сюда же подключен резистор R42, увеличивающий аппаратный гистерезис компаратора MAX999 до уровня 0,6 В. На инвертирующий вход компаратора MAX999, с переменного резистора R35, подается напряжение смещения, задающее уровень срабатывания компаратора. При измерении частоты зашумленных сигналов, необходимо вращением ручки переменного резистора R35 - добиться устойчивых показаний частотомера. Наибольшая чувствительность частотомера реализуется в среднем положении ручки переменного резистора R35. Вращение против часовой стрелки - снижает, а по часовой стрелке - увеличивает пороговое напряжение срабатывания компаратора, позволяя сдвигать порог срабатывания компаратора на незашумленный участок измеряемого сигнала.

Кнопкой "Управление", осуществляется переключение между режимом измерения частоты "Вход B" и режимом тестирования кварцевых резонаторов.
В режиме тестирования кварцевых резонаторов, к крайним контактам панели "Кварц Тест" - необходимо подключить тестируемый кварцевый резонатор, с частотой от 1 МГц до 25 МГц. Средний контакт этой панели - можно не подключать, он соединён с "общим" проводом прибора.

Обратите внимание, что в режиме тестирования кварцевых резонаторов, при отсутствии тестируемого кварца в панели, наблюдается постоянная генерация на относительной высокой частоте (от 35 до 50 МГц).
Также, следует заметить, что при подключении исследуемого кварцевого резонатора, частота генерации будет несколько выше его типовой частоты (в пределах единиц килогерц). Это определяется параллельным режимом возбуждения кварцевого резонатора.
Режим тестирования кварцевых резонаторов с успехом можно использовать для подбора одинаковых кварцевых резонаторов для лестничных многокристальных кварцевых фильтров. При этом, основной критерий подбора кварцевых резонаторов - максимально близкая частота генерации подбираемых кварцев.

Разъёмы, применяемые в частотомере FC1100-M3:

Источник питания для Частотомера FC1100-M3:

Частотомер FC1100-M3 оборудован стандартным разъёмом Mini-USB с напряжением питания +5,0 Вольт.
Потребляемый ток (не более 300 мА) - обеспечивает совместимость с большинством источников питания напряжения USB.
В комплекте имеется кабель "Mini-USB" "USB A", который позволяет питать частотомер от любого устройства, обладающего таким разъёмом (Персональный Компьютер, Ноутбук, USB-HUB, Блок Питания USB, Сетевое Зарядное Устройство USB) и так далее.

Для автономного питания Частотомера FC1100-M3 - оптимально подходят широко-распространенные батареи "Power Bank", со встроенными Литий-Полимерными аккумуляторами, используемые обычно для питания аппаратуры, обладающей разъёмами USB. В этом случае, помимо явного удобства, бонусом вы получаете гальваническую развязку от сети и/или питающего устройства, что немаловажно.



  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то